NIPS 2016 Tutorial: Generative Adversarial Networks
نویسنده
چکیده
This report summarizes the tutorial presented by the author at NIPS 2016 on generative adversarial networks (GANs). The tutorial describes: (1) Why generative modeling is a topic worth studying, (2) how generative models work, and how GANs compare to other generative models, (3) the details of how GANs work, (4) research frontiers in GANs, and (5) state-of-the-art image models that combine GANs with other methods. Finally, the tutorial contains three exercises for readers to complete, and the solutions to these exercises. Introduction This report summarizes the content of the NIPS 2016 tutorial on generative adversarial networks (GANs) (Goodfellow et al., 2014b). The tutorial was designed primarily to ensure that it answered most of the questions asked by audience members ahead of time, in order to make sure that the tutorial would be as useful as possible to the audience. This tutorial is not intended to be a comprehensive review of the field of GANs; many excellent papers are not described here, simply because they were not relevant to answering the most frequent questions, and because the tutorial was delivered as a two hour oral presentation and did not have unlimited time cover all subjects. The tutorial describes: (1) Why generative modeling is a topic worth studying, (2) how generative models work, and how GANs compare to other generative models, (3) the details of how GANs work, (4) research frontiers in GANs, and (5) state-of-the-art image models that combine GANs with other methods. Finally, the tutorial contains three exercises for readers to complete, and the solutions to these exercises. The slides for the tutorial are available in PDF and Keynote format at the following URLs: http://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf 1This is the arxiv.org version of this tutorial. Some graphics have been compressed to respect arxiv.org’s 10MB limit on paper size, and do not reflect the full image quality. 1 ar X iv :1 70 1. 00 16 0v 4 [ cs .L G ] 3 A pr 2 01 7
منابع مشابه
Gradient descent GAN optimization is locally stable
REFERENCES 1. H. K Khalil. Non-linear Systems. Prentice-Hall, New Jersey, 1996. 2. L. Metz, et al., Unrolled generative adversarial networks. (ICLR 2017) 3. M. Heusel et al., GANs trained by a TTUR converge to a local Nash equilibrium (NIPS 2017) 4. I. J. Goodfellow et al., Generative Adversarial Networks (NIPS 2014) An increasingly popular class of generative models — models that “understand” ...
متن کاملGenerative Adversarial Imitation Learning
Consider learning a policy from example expert behavior, without interaction with the expert or access to reinforcement signal. One approach is to recover the expert’s cost function with inverse reinforcement learning, then extract a policy from that cost function with reinforcement learning. This approach is indirect and can be slow. We propose a new general framework for directly extracting a...
متن کاملImprovement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
متن کاملAutomatic Colorization of Grayscale Images Using Generative Adversarial Networks
Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...
متن کاملImproved Techniques for Training GANs
We present a variety of new architectural features and training procedures that we apply to the generative adversarial networks (GANs) framework. Using our new techniques, we achieve state-of-the-art results in semi-supervised classification on MNIST, CIFAR-10 and SVHN. The generated images are of high quality as confirmed by a visual Turing test: Our model generates MNIST samples that humans c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1701.00160 شماره
صفحات -
تاریخ انتشار 2016